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Sparse (linear) neural networks

Reduce time + space complexity

Toward interpretable NN?

→ requires identifiability / stability

Analogy with NMF

Identifiability ensures that solution to
NMF can be interpreted as the physical
ground-truth.

Example: blind hyperspectral unmixing.

Figure: from [Gillis 2020]
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Well-posedness in sparse matrix factorization?

Given a matrix Z , and L ≥ 2, solve

min
X1,...,XL

‖Z − XLXL−1...X1‖

such that X` is sparse, ∀` ∈ {1, ..., L},

by exploring a given family of supports, with proximal algorithm
[Le Magoarou and Gribonval 2016].

Condition of success?

Well-posedness of the problem is the key to recovery success:

uniqueness of the solution to recover

stability with respect to noise

Focus on uniqueness in exact sparse matrix factorization → identifiability
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Identifiability in exact sparse matrix facotrization

Outline
1 Analysis with two factors

2 Multilayer case via hierarchical factorization method

Given a matrix Z and a feasible set ΣL × ΣR of pairs of factors, define:

find, if possible, (X ,Y ) ∈ ΣL × ΣR such that Z = XY T . (EMF)

Theorem

Let Z be the DFT, DCT-II or DST-II matrix of size N = 2L. Suppose
that:

ΣL enforces 2-sparsity by column;

ΣR enforces N
2 -sparsity by column.

Then, Z admits a unique EMF Z = XY T in ΣL × ΣR , up to scaling and
permutation ambiguities.

Notation: Σ2
col × Σ

N/2
col .
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Matrix decomposition into sparse rank-one matrices

Given a matrix Z and a feasible set Γ of r -tuples of rank-one matrices,
define:

find, if possible, (Ci )ri=1 ∈ Γ such that Z =
r∑

i=1

Ci . (EMD)

→ lifting procedure [Choudhary and Mitra 2014], [Le Magoarou 2016]

Proposition

When (X ,Y ) is non-degenerate, identifiability of (X ,Y ) for the EMF of
Z := XY T in ΣL × ΣR is equivalent to identifiability of ϕ(X ,Y ) for the
EMD of Z in Γ.

In the case of Σ2
col × Σ

N/2
col :

Γ2,N/2 :=

{
(Ci )ri=1 | Ci has 2 nonzero rows,

N

2
nonzero columns

}
.

Léon Zheng (INRIA / ENSL / LIP) Identifiability in sparse linear NN June 2021 4 / 10



Matrix decomposition into sparse rank-one matrices

Given a matrix Z and a feasible set Γ of r -tuples of rank-one matrices,
define:

find, if possible, (Ci )ri=1 ∈ Γ such that Z =
r∑

i=1

Ci . (EMD)

→ lifting procedure [Choudhary and Mitra 2014], [Le Magoarou 2016]

Proposition

When (X ,Y ) is non-degenerate, identifiability of (X ,Y ) for the EMF of
Z := XY T in ΣL × ΣR is equivalent to identifiability of ϕ(X ,Y ) for the
EMD of Z in Γ.

In the case of Σ2
col × Σ

N/2
col :

Γ2,N/2 :=

{
(Ci )ri=1 | Ci has 2 nonzero rows,

N

2
nonzero columns

}
.
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Fixed-support identifiability

Analogy with sparse linear recovery (recover s-sparse x from y = Ax):

identifiability of the support constraint

fixed-support identifiability

Proposition

When the rank-one supports “do not overlay too much”, it is possible to
complete without ambiguity missing entries from observable entries via
rank-one matrix completion.

Remark: condition verified when the rank-one supports are disjoint.
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Identifying the support constraint

Proposition

Let Z be the DFT, DCT-II or DST-II matrix. Then, for any EMD
Z =

∑r
i=1 C

i with C ∈ Γ2,N/2, there exists σ such that: supp(Ci ) ⊆ Sσ(i),
where {S i}ri=1 are pairwise disjoint.

DFT4 =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i



1 If C ∈ Γ2,N/2 is an EMD of DFT4, then
16 = ‖DFT4‖0 = ‖

∑4
i=1 C

i‖0 ≤
∑4

i=1 ‖C
i‖0 ≤ 16. Necessarily,

{supp(Ci )}ri=1 are pairwise disjoint.

2 Only one possible partition {S i}i=1,2,3,4 of supp(DFT4) such that
(DFT4)|S i is of rank one.

Léon Zheng (INRIA / ENSL / LIP) Identifiability in sparse linear NN June 2021 6 / 10



Identifying the support constraint

Proposition

Let Z be the DFT, DCT-II or DST-II matrix. Then, for any EMD
Z =

∑r
i=1 C

i with C ∈ Γ2,N/2, there exists σ such that: supp(Ci ) ⊆ Sσ(i),
where {S i}ri=1 are pairwise disjoint.

DFT4 =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


1 If C ∈ Γ2,N/2 is an EMD of DFT4, then

16 = ‖DFT4‖0 = ‖
∑4

i=1 C
i‖0 ≤

∑4
i=1 ‖C

i‖0 ≤ 16. Necessarily,
{supp(Ci )}ri=1 are pairwise disjoint.

2 Only one possible partition {S i}i=1,2,3,4 of supp(DFT4) such that
(DFT4)|S i is of rank one.
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Multilayer extension, with a butterfly sparsity structure
Given a matrix Z and a feasible set Σ of L-tuple of factors, define:

find, if possible, (X`) ∈ Σ such that Z = XLXL−1...X1. (MEMF)

Here: Σfly := {XL, ...,X1 have supp included in the butterfly supports}.

Figure: Butterfly supports: block diagonal + 2-sparse by row and by column.

Theorem

Let Z := XLXL−1...X1 of size N = 2L where supp(XL), ..., supp(X1) are
exactly the butterfly supports. Then, the factors XL, ...,X1 are the unique
MEMF of Z in Σfly, up to scaling ambiguities.

Application: Z = DFT matrix of size N = 2L.
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A hierarchical factorization method
Consider (X4,X3,X2,X1) ∈ Σfly, and

Z = X4X3X2X1.

Lemma

For any (X ′4,X
′
3,X
′
2,X
′
1) ∈ Σfly, we have:

This property of the butterfly supports is true for any number of layers,
and any hierarchical tree structure.

Léon Zheng (INRIA / ENSL / LIP) Identifiability in sparse linear NN June 2021 8 / 10



A hierarchical factorization method
Consider (X4,X3,X2,X1) ∈ Σfly, and

Z = X4X3X2X1.

Lemma

For any (X ′4,X
′
3,X
′
2,X
′
1) ∈ Σfly, we have:

This property of the butterfly supports is true for any number of layers,
and any hierarchical tree structure.
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Exact recovery of the multiple butterfly factors

Let Z := XLXL−1...X1 of size N = 2L where supp(XL), ..., supp(X1) are
exactly the butterfly supports.

Algorithm Exact sparse recovery of
XL, ...,X1 from Z , up to rescaling.

Require: matrix Z
1: H ← Z

2: for ` = L, ..., 1 do
3: S ← ϕ(B`,W `−1)
4: for i = 1, ..., r do
5: Ci ← H|S i

6: end for
7: (X ′`,H

T )← ϕ−1(C)
8: end for
9: return X ′

L
, ...,X ′1

B` = `-th butterfly support

where is a block full of 1s.

Recovery under noise: set Ci as the best rank-one approximation of H|S i .
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Conclusion and discussion

Take-home message

1 Identifiability for well-posedness of sparse matrix factorization

2 Analysis of identifiability in multilinear inverse problems relies on the
lifting approach

3 Extension to the multilayer case via a hierarchical factorization
method

Future work

Tighter conditions for fixed-support identifiability, to better
understand identifiability of the support constraint.

Identifiability in the multilayer case constrained by a family of sparsity
patterns.
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